ASK THE CAT
  • Ask
  • FAQ
  • Summer 2020 Tutoring
    • :: REPRESENT IT!
    • Pre-Algebra Sessions >
      • :: Basic Division
      • :: Complex Division
      • :: Estimation Division
      • :: Division Practice Problems
    • Algebra II >
      • :: Cubic Equations
      • :: Complex Numbers
    • Chemistry >
      • Molarity Basics
    • C++ Sessions >
      • :: Introduction
      • :: Style v Syntax
      • :: Variables & Data Types
      • :: Intialize/Declare Variables
      • :: Types of Operators
      • :: Strings and Input - Output
      • :: How to Construct Arrays
  • AP Bio
    • :: Sketch Notes >
      • :: Part 1
      • :: Part 2
    • :: Chi-Squared Tests
    • :: Cancer
    • :: Hox Genes
    • :: Hardy-Weinberg Principle
    • :: Rule of Multiplication + Addition for Punnett Squares
    • :: CRISPR
    • :: Amino Acid
    • :: Peptide
    • :: Why study Peptides
    • :: Aquaporins
    • :: Gram Stains
    • :: Graph on Excel for Bio Lab
  • AP Chem
    • Organic Chemistry
    • I. Properties of Matter >
      • Neutralization
    • II. Periodic table >
      • Org of Periodic Table
      • :: Groups
    • III. Chemical bonding >
      • :: Mass to Mass conversion
      • :: Naming Acids
      • :: Cross Drop Charge
      • :: Predicting Products
      • :: Balance Equation Question
      • :: Learn to Balance Equation
      • :: VSEPR Simulation
    • IV. Molar Mass >
      • ::LR ER and excess reatant
      • :: Molecular/Formula Mass
      • :: Empirical Formula & Molar Mass
      • :: Percentages & Empirical Formula
      • :: Empirical formula
    • IV. Solutions and Solubility >
      • :: Types of Solutions with Solubility Curves
      • :: Solubility Curve
    • V. Easy Tricks and Tips >
      • :: Tip to Molecular Shapes
      • Memorizing Bond Angles and Polarity
      • :: Chemistry Formulas
      • :: Trick Polyatomic ions
    • VI. General AP Concepts >
      • :: Potential Energy Diagrams
      • :: Haber-Bosch
      • :: Le Chatelier
      • :: Pressure & Moles
      • ::Rydberg's Constant vs Unit of Energy
      • :: Equilibrium and RICE Tables
      • :: Kinetics
      • Galvanic Cells
    • :: Flash cards
    • :: VSEPR
  • AP Stats
    • Chi-Squared Tests
    • Applications of Statistics
    • Standardized Scores
    • Distributions Transformations
  • AP Calc
    • DI Method - Tabular Integration
    • Polar Curves: Tangent Line and Slope
    • Riemann Sums: Left and Right Approximations
    • :: Conic Sections Flash cards
    • :: Parent Functions Flash cards
    • Worked Out Problems >
      • :: Worked Out Problems I
      • :: Worked Out Problems II
      • :: Worked Out Problems III
      • :: Worked Out Problems IV
      • :: Worked Out Problems V
      • :: Worked Out Problems VI
      • :: Worked Out Problems VII
      • :: Worked Out Problems VIII
      • :: Worked Out Problems IX
      • :: Worked Out Problems X
      • :: Worked Out Problems XI
      • :: Worked Out Problems XII
      • :: Worked Out Problems XIII
    • Applying Trig Identities
    • L'Hopital's Rule
    • Differences Between Conic Sections
    • Graphing Conic Sections
    • :: Pre-Calc - Trig Identities
    • Tangent & Normal Lines
    • Indefinite integrals: U Sub
    • Calculus Derivatives >
      • Product Rule
      • Quotient Rule
      • Chain Rule
  • AP CS A
    • Studying for AP CSA 2020
    • :: Control Structures
    • :: What is Networking
    • :: Recursion
    • :: While Do While Loops in Java
    • :: Interface in Java
    • :: ArrayLists
    • :: Java Naming Conventions
    • :: Logic Circuits
    • :: Getters and Setters
    • :: Binary & Hexadecimal
  • AP Español
    • AP Español Salsa
  • Arduino
    • Quick Look
    • Project #1: Blinking LED
    • Project #2: Button LED
    • Project #3: Flowing LED
    • Project #4: LCD Display
    • Project #5: Serial Monitor
  • App
    • AP Go Pow How?
    • AP Go Pow APP Page
  • Musings
    • :: Backward induction
    • :: what is ISS
    • :: Rotational Matrices
    • :: Primary v Secondary Pollutants
    • :: Black Hole
    • :: Covid-19 Hackathon
    • :: Evolution of Immunizations
    • :: Predictions of Diseases
    • :: Book List
    • :: Patterncount
    • :: Binary Classification
    • :: Cybersecurity
    • :: Self Similarity
    • :: Trig Identities
    • :: UIL Number S
    • :: Box Offensive Play
    • :: Why Card Trick Works
    • :: Easy Multiplication
  • AP CREDIT
  • About
Quick Look: Arduino UNO board

Picture
Following are the different components on the Arduino board.  I'm using  the Arduino "UNO" board because it is the most popular board in the Arduino board family. In addition, it is the best board to get started with electronics and coding. Some boards look a bit different from the one on the left, but most Arduinos have majority of these components in common.

1. Power USB
Arduino board can be powered by using the USB cable from your computer. All you need to do is connect the USB cable to the USB connection (1).

2. Power (Barrel Jack)

Arduino boards can be powered directly from the AC mains power supply by connecting it to the Barrel Jack (2).


3. Voltage Regulator

The function of the voltage regulator is to control the voltage given to the Arduino board and stabilize the DC voltages used by the processor and other elements.

4. Crystal Oscillator

The crystal oscillator helps Arduino in dealing with time issues. How does Arduino calculate time? The answer is, by using the crystal oscillator. The number printed on top of the Arduino crystal is 16.000H9H. It tells us that the frequency is 16,000,000 Hertz or 16 MHz.

5,17 :  Arduino Reset

You can reset your Arduino board, i.e., start your program from the beginning. You can reset the UNO board in two ways. First, by using the reset button (17) on the board. Second, you can connect an external reset button to the Arduino pin labelled RESET (5).

6,7,8,9. Pins (3.3, 5, GND, Vin)
  • 3.3V (6) − Supply 3.3 output volt
  • 5V (7) − Supply 5 output volt
  • Most of the components used with Arduino board works fine with 3.3 volt and 5 volt.
  • GND (8)(Ground) − There are several GND pins on the Arduino, any of which can be used to ground your circuit.
  • Vin (9) − This pin also can be used to power the Arduino board from an external power source, like AC mains power supply.

10. Analog pins
The Arduino UNO board has five analog input pins A0 through A5. These pins can read the signal from an analog sensor like the humidity sensor or temperature sensor and convert it into a digital value that can be read by the microprocessor.

11. Main microcontroller

Each Arduino board has its own microcontroller (11). You can assume it as the brain of your board. The main IC (integrated circuit) on the Arduino is slightly different from board to board. The microcontrollers are usually of the ATMEL Company. You must know what IC your board has before loading up a new program from the Arduino IDE. This information is available on the top of the IC. For more details about the IC construction and functions, you can refer to the data sheet.

12. ICSP pin
Mostly, ICSP (12) is an AVR, a tiny programming header for the Arduino consisting of MOSI, MISO, SCK, RESET, VCC, and GND. It is often referred to as an SPI (Serial Peripheral Interface), which could be considered as an "expansion" of the output. Actually, you are slaving the output device to the master of the SPI bus.

13. Power LED indicator
This LED should light up when you plug your Arduino into a power source to indicate that your board is powered up correctly. If this light does not turn on, then there is something wrong with the connection.

14. TX and RX LEDs
On your board, you will find two labels: TX (transmit) and RX (receive). They appear in two places on the Arduino UNO board. First, at the digital pins 0 and 1, to indicate the pins responsible for serial communication. Second, the TX and RX led (13). The TX led flashes with different speed while sending the serial data. The speed of flashing depends on the baud rate used by the board. RX flashes during the receiving process.

15. Digital I/O
The Arduino UNO board has 14 digital I/O pins (15) (of which 6 provide PWM (Pulse Width Modulation) output. These pins can be configured to work as input digital pins to read logic values (0 or 1) or as digital output pins to drive different modules like LEDs, relays, etc. The pins labeled “~” can be used to generate PWM.

16. AREF
AREF stands for Analog Reference. It is sometimes, used to set an external reference voltage (between 0 and 5 Volts) as the upper limit for the analog input pins.



Picture

keentween

  • Ask
  • FAQ
  • Summer 2020 Tutoring
    • :: REPRESENT IT!
    • Pre-Algebra Sessions >
      • :: Basic Division
      • :: Complex Division
      • :: Estimation Division
      • :: Division Practice Problems
    • Algebra II >
      • :: Cubic Equations
      • :: Complex Numbers
    • Chemistry >
      • Molarity Basics
    • C++ Sessions >
      • :: Introduction
      • :: Style v Syntax
      • :: Variables & Data Types
      • :: Intialize/Declare Variables
      • :: Types of Operators
      • :: Strings and Input - Output
      • :: How to Construct Arrays
  • AP Bio
    • :: Sketch Notes >
      • :: Part 1
      • :: Part 2
    • :: Chi-Squared Tests
    • :: Cancer
    • :: Hox Genes
    • :: Hardy-Weinberg Principle
    • :: Rule of Multiplication + Addition for Punnett Squares
    • :: CRISPR
    • :: Amino Acid
    • :: Peptide
    • :: Why study Peptides
    • :: Aquaporins
    • :: Gram Stains
    • :: Graph on Excel for Bio Lab
  • AP Chem
    • Organic Chemistry
    • I. Properties of Matter >
      • Neutralization
    • II. Periodic table >
      • Org of Periodic Table
      • :: Groups
    • III. Chemical bonding >
      • :: Mass to Mass conversion
      • :: Naming Acids
      • :: Cross Drop Charge
      • :: Predicting Products
      • :: Balance Equation Question
      • :: Learn to Balance Equation
      • :: VSEPR Simulation
    • IV. Molar Mass >
      • ::LR ER and excess reatant
      • :: Molecular/Formula Mass
      • :: Empirical Formula & Molar Mass
      • :: Percentages & Empirical Formula
      • :: Empirical formula
    • IV. Solutions and Solubility >
      • :: Types of Solutions with Solubility Curves
      • :: Solubility Curve
    • V. Easy Tricks and Tips >
      • :: Tip to Molecular Shapes
      • Memorizing Bond Angles and Polarity
      • :: Chemistry Formulas
      • :: Trick Polyatomic ions
    • VI. General AP Concepts >
      • :: Potential Energy Diagrams
      • :: Haber-Bosch
      • :: Le Chatelier
      • :: Pressure & Moles
      • ::Rydberg's Constant vs Unit of Energy
      • :: Equilibrium and RICE Tables
      • :: Kinetics
      • Galvanic Cells
    • :: Flash cards
    • :: VSEPR
  • AP Stats
    • Chi-Squared Tests
    • Applications of Statistics
    • Standardized Scores
    • Distributions Transformations
  • AP Calc
    • DI Method - Tabular Integration
    • Polar Curves: Tangent Line and Slope
    • Riemann Sums: Left and Right Approximations
    • :: Conic Sections Flash cards
    • :: Parent Functions Flash cards
    • Worked Out Problems >
      • :: Worked Out Problems I
      • :: Worked Out Problems II
      • :: Worked Out Problems III
      • :: Worked Out Problems IV
      • :: Worked Out Problems V
      • :: Worked Out Problems VI
      • :: Worked Out Problems VII
      • :: Worked Out Problems VIII
      • :: Worked Out Problems IX
      • :: Worked Out Problems X
      • :: Worked Out Problems XI
      • :: Worked Out Problems XII
      • :: Worked Out Problems XIII
    • Applying Trig Identities
    • L'Hopital's Rule
    • Differences Between Conic Sections
    • Graphing Conic Sections
    • :: Pre-Calc - Trig Identities
    • Tangent & Normal Lines
    • Indefinite integrals: U Sub
    • Calculus Derivatives >
      • Product Rule
      • Quotient Rule
      • Chain Rule
  • AP CS A
    • Studying for AP CSA 2020
    • :: Control Structures
    • :: What is Networking
    • :: Recursion
    • :: While Do While Loops in Java
    • :: Interface in Java
    • :: ArrayLists
    • :: Java Naming Conventions
    • :: Logic Circuits
    • :: Getters and Setters
    • :: Binary & Hexadecimal
  • AP Español
    • AP Español Salsa
  • Arduino
    • Quick Look
    • Project #1: Blinking LED
    • Project #2: Button LED
    • Project #3: Flowing LED
    • Project #4: LCD Display
    • Project #5: Serial Monitor
  • App
    • AP Go Pow How?
    • AP Go Pow APP Page
  • Musings
    • :: Backward induction
    • :: what is ISS
    • :: Rotational Matrices
    • :: Primary v Secondary Pollutants
    • :: Black Hole
    • :: Covid-19 Hackathon
    • :: Evolution of Immunizations
    • :: Predictions of Diseases
    • :: Book List
    • :: Patterncount
    • :: Binary Classification
    • :: Cybersecurity
    • :: Self Similarity
    • :: Trig Identities
    • :: UIL Number S
    • :: Box Offensive Play
    • :: Why Card Trick Works
    • :: Easy Multiplication
  • AP CREDIT
  • About