ASK THE CAT
  • Ask
  • FAQ
  • R Winter Series
    • Create & Manipulate Matrices
    • Data Cleaning, Data Frames & Lists
    • Tidyverse
    • Creating Graphs with ggplot
  • AP CS A
    • Java July Series >
      • :: Classes & OOPs
      • :: Interface
      • :: Inheritance
      • :: Intro To Arrays Java
      • :: Arrays Continued
    • :: CS-A or CS-P?
    • :: Control Structures
    • :: Recursion
    • :: While Do While Loops in Java
    • :: Interface in Java
    • :: ArrayLists
    • :: Java Naming Conventions
    • :: Logic Circuits
    • :: Getters and Setters
    • :: Binary & Hexadecimal
  • Summer 2020 Tutoring
    • :: REPRESENT IT!
    • Pre-Algebra Sessions >
      • :: Basic Division
      • :: Complex Division
      • :: Estimation Division
      • :: Division Practice Problems
    • Algebra II >
      • :: Cubic Equations
      • :: Complex Numbers
    • Chemistry >
      • Molarity Basics
    • C++ Sessions >
      • :: Introduction
      • :: Style v Syntax
      • :: Variables & Data Types
      • :: Intialize/Declare Variables
      • :: Types of Operators
      • :: Strings and Input - Output
      • :: How to Construct Arrays
  • AP Bio
    • :: Sketch Notes >
      • :: Part 1
      • :: Part 2
    • :: epigenetics
    • :: Chi-Squared Tests
    • :: Cancer
    • :: Hox Genes
    • :: Hardy-Weinberg Principle
    • :: Rule of Multiplication + Addition for Punnett Squares
    • :: CRISPR
    • :: Amino Acid
    • :: Peptide
    • :: Why study Peptides
    • :: Aquaporins
    • :: Gram Stains
    • :: Graph on Excel for Bio Lab
  • AP Chem
    • Organic Chemistry
    • I. Properties of Matter >
      • Neutralization
    • II. Periodic table >
      • Org of Periodic Table
      • :: Groups
    • III. Chemical bonding >
      • :: Mass to Mass conversion
      • :: Naming Acids
      • :: Cross Drop Charge
      • :: Predicting Products
      • :: Balance Equation Question
      • :: Learn to Balance Equation
      • :: VSEPR Simulation
    • IV. Molar Mass >
      • ::LR ER and excess reatant
      • :: Molecular/Formula Mass
      • :: Empirical Formula & Molar Mass
      • :: Percentages & Empirical Formula
      • :: Empirical formula
    • IV. Solutions and Solubility >
      • :: Types of Solutions with Solubility Curves
      • :: Solubility Curve
    • V. Easy Tricks and Tips >
      • :: Tip to Molecular Shapes
      • Memorizing Bond Angles and Polarity
      • :: Chemistry Formulas
      • :: Trick Polyatomic ions
    • VI. General AP Concepts >
      • :: Potential Energy Diagrams
      • :: Haber-Bosch
      • :: Le Chatelier
      • :: Pressure & Moles
      • ::Rydberg's Constant vs Unit of Energy
      • :: Equilibrium and RICE Tables
      • :: Kinetics
      • Galvanic Cells
    • :: Flash cards
    • :: VSEPR
  • AP Stats
    • Chi-Squared Tests
    • Solving Chi-Sqd Test Using Sheets
    • Applications of Statistics
    • Standardized Scores
    • Distributions Transformations
  • AP Calc
    • DI Method - Tabular Integration
    • Polar Curves: Tangent Line and Slope
    • Riemann Sums: Left and Right Approximations
    • :: Conic Sections Flash cards
    • :: Parent Functions Flash cards
    • Worked Out Problems >
      • :: Worked Out Problems I
      • :: Worked Out Problems II
      • :: Worked Out Problems III
      • :: Worked Out Problems IV
      • :: Worked Out Problems V
      • :: Worked Out Problems VI
      • :: Worked Out Problems VII
      • :: Worked Out Problems VIII
      • :: Worked Out Problems IX
      • :: Worked Out Problems X
      • :: Worked Out Problems XI
      • :: Worked Out Problems XII
      • :: Worked Out Problems XIII
    • Applying Trig Identities
    • L'Hopital's Rule
    • Differences Between Conic Sections
    • Graphing Conic Sections
    • :: Pre-Calc - Trig Identities
    • Tangent & Normal Lines
    • Indefinite integrals: U Sub
    • Calculus Derivatives >
      • Product Rule
      • Quotient Rule
      • Chain Rule
  • Arduino
    • Quick Look
    • Project #1: Blinking LED
    • Project #2: Button LED
    • Project #3: Flowing LED
    • Project #4: LCD Display
    • Project #5: Serial Monitor
  • AP Español
    • AP Español Salsa
  • App
    • AP Go Pow How?
    • AP Go Pow APP Page
  • Musings
    • :: Bayesian Example
    • :: Nash equilibria
    • :: Bayesian Nash Equilibrium
    • :: Backward induction
    • :: what is ISS
    • :: Rotational Matrices
    • :: Primary v Secondary Pollutants
    • :: Black Hole
    • :: Covid-19 Hackathon
    • :: Evolution of Immunizations
    • :: Predictions of Diseases
    • :: Book List
    • :: Patterncount
    • :: Binary Classification
    • :: Cybersecurity
    • :: What is CIA Triad
    • :: What is Networking
    • :: Self Similarity
    • :: Trig Identities
    • :: UIL Number S
    • :: Box Offensive Play
    • :: Why Card Trick Works
    • :: Easy Multiplication
  • AP CREDIT
  • About

Question:  What is the DI method and how do you use it?
The advantage of using this method is: its easy to do integrate-by-parts mechanically. Without even needing to exert a large amount of thinking about the special circumstances of the problem.

The process is fairly quick to memorize and it is very easy to retain. After you learn it once, it will always be at your disposal as a tool for quickly and easily determining indefinite integrals that would otherwise take lot of time to find.

Picture
Intrigued?  Learn more about an awesome teacher who brought this method to popular culture here..
Jaime Escalante. Escalante taught calculus with outstanding success at Garfield High, in a tough Hispanic neighborhood of East Lost Angeles learn more..


                           It Takes Ganas !

I : DI Method

V.N. Murty, Integration by parts, Two-Year College Mathematics Journal 11, 1980, pages 90-94.2David Horowitz, Tabular Integration by Parts, College MathematicsJournal, 21, 1990, pages 307-311.3K.W. Folley, integration by parts, American Mathematical Monthly 54, 1947, pages 542-543
                                                                                    

Picture

keentween

  • Ask
  • FAQ
  • R Winter Series
    • Create & Manipulate Matrices
    • Data Cleaning, Data Frames & Lists
    • Tidyverse
    • Creating Graphs with ggplot
  • AP CS A
    • Java July Series >
      • :: Classes & OOPs
      • :: Interface
      • :: Inheritance
      • :: Intro To Arrays Java
      • :: Arrays Continued
    • :: CS-A or CS-P?
    • :: Control Structures
    • :: Recursion
    • :: While Do While Loops in Java
    • :: Interface in Java
    • :: ArrayLists
    • :: Java Naming Conventions
    • :: Logic Circuits
    • :: Getters and Setters
    • :: Binary & Hexadecimal
  • Summer 2020 Tutoring
    • :: REPRESENT IT!
    • Pre-Algebra Sessions >
      • :: Basic Division
      • :: Complex Division
      • :: Estimation Division
      • :: Division Practice Problems
    • Algebra II >
      • :: Cubic Equations
      • :: Complex Numbers
    • Chemistry >
      • Molarity Basics
    • C++ Sessions >
      • :: Introduction
      • :: Style v Syntax
      • :: Variables & Data Types
      • :: Intialize/Declare Variables
      • :: Types of Operators
      • :: Strings and Input - Output
      • :: How to Construct Arrays
  • AP Bio
    • :: Sketch Notes >
      • :: Part 1
      • :: Part 2
    • :: epigenetics
    • :: Chi-Squared Tests
    • :: Cancer
    • :: Hox Genes
    • :: Hardy-Weinberg Principle
    • :: Rule of Multiplication + Addition for Punnett Squares
    • :: CRISPR
    • :: Amino Acid
    • :: Peptide
    • :: Why study Peptides
    • :: Aquaporins
    • :: Gram Stains
    • :: Graph on Excel for Bio Lab
  • AP Chem
    • Organic Chemistry
    • I. Properties of Matter >
      • Neutralization
    • II. Periodic table >
      • Org of Periodic Table
      • :: Groups
    • III. Chemical bonding >
      • :: Mass to Mass conversion
      • :: Naming Acids
      • :: Cross Drop Charge
      • :: Predicting Products
      • :: Balance Equation Question
      • :: Learn to Balance Equation
      • :: VSEPR Simulation
    • IV. Molar Mass >
      • ::LR ER and excess reatant
      • :: Molecular/Formula Mass
      • :: Empirical Formula & Molar Mass
      • :: Percentages & Empirical Formula
      • :: Empirical formula
    • IV. Solutions and Solubility >
      • :: Types of Solutions with Solubility Curves
      • :: Solubility Curve
    • V. Easy Tricks and Tips >
      • :: Tip to Molecular Shapes
      • Memorizing Bond Angles and Polarity
      • :: Chemistry Formulas
      • :: Trick Polyatomic ions
    • VI. General AP Concepts >
      • :: Potential Energy Diagrams
      • :: Haber-Bosch
      • :: Le Chatelier
      • :: Pressure & Moles
      • ::Rydberg's Constant vs Unit of Energy
      • :: Equilibrium and RICE Tables
      • :: Kinetics
      • Galvanic Cells
    • :: Flash cards
    • :: VSEPR
  • AP Stats
    • Chi-Squared Tests
    • Solving Chi-Sqd Test Using Sheets
    • Applications of Statistics
    • Standardized Scores
    • Distributions Transformations
  • AP Calc
    • DI Method - Tabular Integration
    • Polar Curves: Tangent Line and Slope
    • Riemann Sums: Left and Right Approximations
    • :: Conic Sections Flash cards
    • :: Parent Functions Flash cards
    • Worked Out Problems >
      • :: Worked Out Problems I
      • :: Worked Out Problems II
      • :: Worked Out Problems III
      • :: Worked Out Problems IV
      • :: Worked Out Problems V
      • :: Worked Out Problems VI
      • :: Worked Out Problems VII
      • :: Worked Out Problems VIII
      • :: Worked Out Problems IX
      • :: Worked Out Problems X
      • :: Worked Out Problems XI
      • :: Worked Out Problems XII
      • :: Worked Out Problems XIII
    • Applying Trig Identities
    • L'Hopital's Rule
    • Differences Between Conic Sections
    • Graphing Conic Sections
    • :: Pre-Calc - Trig Identities
    • Tangent & Normal Lines
    • Indefinite integrals: U Sub
    • Calculus Derivatives >
      • Product Rule
      • Quotient Rule
      • Chain Rule
  • Arduino
    • Quick Look
    • Project #1: Blinking LED
    • Project #2: Button LED
    • Project #3: Flowing LED
    • Project #4: LCD Display
    • Project #5: Serial Monitor
  • AP Español
    • AP Español Salsa
  • App
    • AP Go Pow How?
    • AP Go Pow APP Page
  • Musings
    • :: Bayesian Example
    • :: Nash equilibria
    • :: Bayesian Nash Equilibrium
    • :: Backward induction
    • :: what is ISS
    • :: Rotational Matrices
    • :: Primary v Secondary Pollutants
    • :: Black Hole
    • :: Covid-19 Hackathon
    • :: Evolution of Immunizations
    • :: Predictions of Diseases
    • :: Book List
    • :: Patterncount
    • :: Binary Classification
    • :: Cybersecurity
    • :: What is CIA Triad
    • :: What is Networking
    • :: Self Similarity
    • :: Trig Identities
    • :: UIL Number S
    • :: Box Offensive Play
    • :: Why Card Trick Works
    • :: Easy Multiplication
  • AP CREDIT
  • About